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A negative value of w. represents a gap rather tha,n over-

lap between strip edges.

The basis for parallel-plate capacitance is shown in

Fig. 10. For both even and odd modes, C,= Cl+ CZ.

Since the strip arrangement is symmetrical in this case,

the fringe capacitance is calculated for only one strip.

Again, the required expressions for fringing capacitance

are found by conventional methods. -
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Theoretical Analysis of Twin4!Hab Phase

Shifters in Rectangular Waveguide

ERNST SCHLOMANN

Abstracf—The differential phase shift and the losses to be ex-

pected in phase shdters using two oppositely magnetized ferrite slabs

located symmetrically in a rectangular waveguide have been calcu-

lated for various locations and thicknesses of the ferrite slabs. For

small thicknesses of the ferrite slabs, the differential phase shift in-

creases rapidly witk increasing thickness reaching a maximum when

the thickness is approximately 1/10 of the free space wavelength.

The calculated insertion loss of a 360-degree phase shifter decreases

with increasing slab thickness for small thickness, reaching a minL

mum when the thickness is approximately 1/25 of the free space

wavelength. The minimum insertion loss calculated with the assump-

tion that the imaginary part of the diagonal component of the perme-

ability tensor is 0.01 and that dielectric loss can be neglected is ap-

proximately 0.85 dlB. The peak power handling capability has also

been analyzed. U can conveniently be summarized in terms of a high-

power figure of merit. For reasonably high values of thk figure of

merit, a peak power capability of the order of 100 kW is anticipated.

I. IN~RODucT1O~

o

NE OF THE more promising device configura-

tions for digital ferrite phase shifters is that of a

rectangular waveguide containing circumferen-
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tially magnetized ferrite toroids of suitablle length ~1],

[2]. Such a structure is shown in Fig. 1. A very similar

structure, which is more readily amenable to theoretical

analysis, is shown in Fig. 2. Here the ferrite toroid lhas

been replaced by two oppositely magnetized slabs which

extend over the complete height of the waveguide. The

propagation of electromagnetic waves through wa,ve-

guides of the type shown in Fig. 2 has previously been

analyzed by Lax et al. [3], [4] and by von Aulock [5].

Here we use substantially the notation of von Aulock.

In the previous work, only the differential phase shift

and the field configuration have been discussed. The

present paper contains more detailed results than pre-

viously published, concerning the differential phase shift

and its dependence upon parameters such as spacing,

width, dielectric constant, and remanent rnag-netization

of the ferrite slabs. In addition, the present paper con-

tains a discussion of the insertion loss and the pleak

power limitations of these devices.

For odd TE.O-modes the characteristic equation for

the reduced propagation constant r can be expressed as

v(1 + cot al cot az) + { cot al + 7 cot ff~
cot ~ . —— —–-–-—– (1)

cot a] cot a!z — 1
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Directionof
rnmnetizatio~ ~Ferri+e toroid\ /

/

Fig. 1. Phase shifter using ferrite toroid

K r
v=——
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(1 – r2)l/2

The lengths al, a~, and d are explained in Fig. 2. AO is the

free space wavelength, e the permittivity, ~ the diagonal,

~jK the off-diagonal component of the permeability

tensor, and I’ equals h@/27r where ~ is the propagation

constant. If e, M, and K are real, the solution 1? of the

characteristic equation (1) is also real. This means that

the wave is not attenuated. If c, p, or K are complex,

‘a’=If&o’
Fig. 2. Phase shifter using twin ferrite slabs.

of practical interest, the RF fields are strongly concen-

trated in and near the ferrite slabs, so that the precise

location of the side walls of the waveguide becomes inl-

material. It is shown, in fact that the differential phase

shift is large enough to be of practical interest only when

I’z >1. This implies that the variation of the electro-

magnetic field is sinusoidal inside the ferrite, but expo-

nential outside the ferrite. In most cases of practical

interest, the exponential decrease of the fields away

from the ferrite slabs is so strong that the exact location

of the waveguide wall has no substantial influence on the

propagation characteristics. This can be derived in a

formal way from the characteristic equation (1) by

noting that for J7z>1, cot al becomes —j coth I al] and,

hence, independent of al for I al I >>1. We shall refer to

this approximation as the “strong field concentration”

approximation.

For convenience, we introduce the abbreviations

D = 2~d/iO ; .41 = 27raJXO; AZ = 27fa2/A,. (5)

The characteristic equation in the strong field concen-

tration approximation [A 1(1’2 – 1) lj~>>l ] can then be

expressed as

.n .

—+ 1 1~ + ~,(1” – 1) ’12 tanh Aj(rz – 1)112
P ~(rz – 1)1/z – ~

cot D(w, — rZ)l/z =
(w, – !i’’)’i’[l + tanh A2(r2 – 1)1/’]

however, the solution r of this equation is also complex;

the imaginary part describing the attenuation of the

wave. The effective permeability p, in (2) is given by

(3)

In the present context, the case of near center loading

is of particular interest. In this case cu = O, and the char-

acteristic equation reduces to

cot6=v+rl tan al. (4)

Since the characteristic equation (1) is quite involved

and depends on a large number of parameters, it is

worthwhile to try to simplify it by introducing a reason-

able approximation, reducing at the same time the

number of significant parameters. The discussion of the

characteristic equation which follows shows that in cases

(6)

The simplification for the case of center loading (A2 = O)

is obvious. Equation (6) can also be used if rz >cp.. In

this case, the left-hand side must be replaced by

coth ~(1’2 —c,ue) 112and the first factor in the denominator

on the right-hand side by (I’z —cP,) 1[2.

II. DIFFERENTIAL PHASE SHIFT

In order to test the validity of the strong field con-

centration approximation, the characteristic equation

(4) (applicable for center loading) has been solved both

with and without invoking this approximation. This cal-

culation was carried out for e = 11, p= 1, and K= +0.5.

These numerical values are applicable in the case of

spinel ferrites at the remanence point if 4r.Mr.~ equals

u/2-y, where u is the angular frequency and -y the gyro-

magnetic ratio.

Figure 3 shows the reduced propagation constant r as
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Fig. 3. Reduced propagation constant I’=l@/2rvs. reduced slab
width D=2ird/XO for A2=0 (center loading), A1=7r/2 (empty
waveguide at cutoff)! and Al= cc (strong field concentration ap-
proximation). Material constants: ~’=l, ti’= t*, 6’=11.

a function of reduced slab thickness for center loading.

Four separate curves corresponding to A 1= 7r/2, A 1= ~,

and K = + ~ are shown. The lower portion of each curve is

replotted on an expanded scale in the lower right-hand

corner of the figure. The case A 1= cc represents the

strong field concentration approximation. The case

A ~= 7r/2 corresponds to a waveguide which is at cutoff

in the limit D~O. It may be seen that corresponding

curves differ appreciably only for small slab thicknesses

where the differential phase shift is small and, hence, of

little practical interest, This shows that the strong field

concentration approximation is reasonably well justified

under the conditions encountered in practice.

The characteristic equation applicable in the case of

strong field concentration has been solved for arbitrary

but relatively :small spacing of the slabs. In addition to

the previously mentioned numerical example (e= 11,

N =1, K = + 0.5), the calculation was also carried out for

c=16, u=1, K== iO.25, fO.32, +0.4, and ~0.5. Thedi-

electric constant (c = 16) is typical for garnets.

Figures 4-8 show the difference between the reduced

propagation constants for the two directions of mag-

netization (i. e., the differential phase shift per unit

length times A,3/27r) as a function of reduced slab thick-

ness D in the strong field concentration approximation.

The four different curves in each figure correspond to

AZ equal to O, 0.05, 0.1, and 0.2. It maybe seen that the

differential Dhase shift increases ra~idlv with slab thick-
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Fig. 4. Reduced differential phase shift Ar vs. reduced slab width
D calculated using strong field concentration approximation. Ma-
terial COnStan@: p’= 1, K’= ~0.5, .S’= Il.
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Fig. 5. Reduced differential phase shift Ar vs. reduced slab width
D calculated using strong field concentration approximation. Ma-
terial constants: p’= 1, I’= f 0.25, ~’= 16.
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Fig. 6. Reduced differential phase shift Ar vs. reduced slab width
D calculated using strong field concentration approximation]],. Ma-
terial constants: P’= 1, ~’= ~0.32, d = 16.. . .
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Fig. 7. Reduced differential phase shift AJ7 vs. reduced slab width
D calculated using strong field concentration approximation. Ma-
terial constants: p’= 1, .’= t 0.44, e’= 16.
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Fig. 8. Reduced differential phase shift Ar vs. reduced slab width
D calculated using strong field concentration approximation. Ma-
terial constants: p’= 1, K’= +().5, .’= 16.
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Fig. 9. Reduced differential phase shift Ar vs. K’ (the off-diagonal
component of the permeability tensor) for D = 0.4 and various
slab spacings A ~.

ness when the slab thickness is small, and that it reaches

a maximum when Dc9.6, or D~O.5 for c= 11 and e= 16,

respectively. The differential phase shift also depends

fairly sensitively on the slab spacing A ~, being largest

for A,=O.

A numerical example is instructive. For S band

(~= 3 Gc/s) a slab thickness of ~ inch and a slab spacing

of & inch are equivalent to D = 0,4, Az = 0.05. Accord-

ing to Fig. 4, this implies for K = t ~, that Ar = 0.47 or

a differential phase shift of 16.9 degrees/cm. The length

of the ferrite slabs necessary to obtain a phase shift of

360 degrees is, in general, given by

1 = io/AI’. (7)

For our numerical example, this length is 21.3 cm.

It is instructive to consider the dependence of the dif-

ferential phase shift AI’ upon K, the off-diagonal element

of the permeability tensor. For K<<l, the differential

phase shift should obviously be proportional to ~. In

Fig. 9, AI’ has been plotted vs. K for c = 16, D = 0.4, and

AZ=O, 0.05, 0.1, and 0.2. This figure shows that AT’ is

in fact proportional to K up to K = ~, to a Wrprking de-

gree of accuracy. This suggests that the calculation used

for determining the curves in Figs. 4–9 could be some-

what simplified by using a perturbation theoretical ap-

proach in which K is treated as small.

III. LOSSES

The complex circular susceptibilities x+ and x–, as

calculated on the basis of the Landau-Lifshitz equation,

can be expressed in the form

M’
~+ =

H–:
y+ih

M
~_ = (8)

H+:
y–ih

where AI is the saturation magnetization, H the internal

magnetic field, co the angular frequency, ~ the gyro-

magnetic ratio, and the 10SS parameter A is (for ~<<~)

related to the linewidth AH by

AH=2ti3-
72

(9)

In order to apply the result (8) based on the Landau-

Lifshitz equation to the behavior at remanence, account

must be taken of the fact that the material is not, in

general, magnetized to saturation. It has been shown

by Rado [6] that this fact can largely be taken into

account by replacing the saturation magnetization by

the remanent magnetization.

According to (8), the imaginary parts of x+ and X_

become equal for EI = O (i.e., at remanence). Thus,

K = 2m(x+ — x_) will be real. It appears quite likely that

this result is a specific prediction of the Landau-Lifshiftz
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equation, which, may not, in general, be absolutely cor-

rect. hTevertheless, it is reasonable to assume for a first

orientation that K, is, in fact, real and to calculate the

losses to be expected on that basis. In order to simplify

the problem, tine dielectric losses have also been ne-

glected.

The dielectric and the magnetic contributions to the

insertion loss are roughly comparable when the mag-

netic and dielectric loss tangents are equal. In ‘(good”

microwave ferrites, the dielectric loss tangent is of the

order of 10–4. The magnetic loss tangent, on the other

hand, is usually larger than 10–3. Under these conditions,

the dielectric losses can be neglected by way of

approximation.

The losses have been calculated only for the case of

center loading in the strong field concentration approxi-

mation. The relevant characteristic equation is (6) with

.42=0. We replizce r by I“ –jI’”, p by 1 –j~”, and p, by

p’, —jp.” where

,%” = P“(1 + K2) (10)

since K is real.

For small r“, p“, and p:’ their interrelationship

through the imaginary part of the characteristic equa-

tion is of the form

r’r”(a + @ = *w:’a + ,u”-i (11)

where

~ _ r~~

~r + ——
(~/2 –. 1)1/2

a = [1 + cot2 D(w C — r’z)liz]~ — —
W e – r“

~ — rfz
~=_;+. 2

(r’z – 1)’/z + (r’z – 1)8;

(12)

As long as clielectric losses can be neglected, I’” is

proportional to, ~“. It is, therefore, convenient to con-

sider the ratio I“’/p”. In Fig. 10, this quantity is plotted

vs. D for e= 11, K=O, + +; and, similarly, in Fig. 11 for

c = 16, K= ~+, -L-+. The expected loss L (in dB) of a

phase shift section of length 2 can be obtained from these

graphs by using the relation

L = 8.686. 2ir ; r“. (13)

It should be noticed that 1“’/~” depends very little upon

K, at least for I KI < ~ and D <0.4. This is especially true

for the larger v,~lue of e used in the calculation (Fig. 11).

This again suggests that a perturbation-theoretical

treatment of the characteristic equation, in which K is

treated as smal 1, is adequate for most purposes.

A very important quantity characterizing the per-

formance of phase shifters is the ratio of loss to differen-

tial phase shift, or equivalently, the loss of a waveguide

15
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Fig. 10. Imaginary part I’” of the reduced propagation constant
divided by J’ plotted vs. reduced slab width D for AI= m
(strong held concentration approximation) and Az = O (center
loading). Material constants: ~’= 1, K’= f ~, C’= 11, K“ = 0.

“OL+J+JO
D’

Fig. 11. Imaginary part r“ of the reduced propagation consta~~t di-
vided by y“ plotted vs. reduced slab width D for A I = m (strong
field concentration approximation) and A,= O (center loading).
Material constants: p’= 1, K’= ~0.25, tO.5, e’,= 16, .“ =0.

section having a prescribed differential phase shift of, for

instance, 27r. This loss, denoted by LzT, according to, (7)

and (13) is related to r“ and Ar by

L2. = 8.686 x 2rr’’/Ar. (14)

Figure 12 shows a plot of Lz. vs. D for E=ll, K= +3,

and assuming center loading (A z = O). For the sake of

definiteness, it has been assumed that [L;’= 0.01, i.e.,

p“ = 0.008. These numerical values are reasonable for a

good ferrite. If the actual value of p:’ differs from 0.01,

the relevant curve can be obtained by appropriately

scaling the vertical axis. The curve of Lt. VS. D h~as a

rather sharp minimum at D = 0.25. This corresponds to

a slab thickness of approximately ~1~ times, the free space

wavelength Ao.

In Fig. 13, similar results for E= 16 and K= + 1 are

shown. The curve for L2V is based upon the assumption

that ~“ =0.01 (rather than 0.008, as in Fig. 12). It should

be noticed that the minimum of L.z~ now occurs ;at a
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Fig. 12. Calculated insertion loss LzT (in dB) of a 360-degree phase
shifter vs. reduced slab width D. Assumptions: AI = Q, Az = O.
Material constants: p’= 1, K’= ++, K,’ =;, 6’= 11, ,u” =0.008,
K“=o, M.’’ =01,1, e“=O.

04

03

v

&(,16

K’ =0.5

02

01

:/

00
I I I

01 02 03 04

- 20

15

- 10

- 05

D

Fig. 13. Reduced differential phase shift Ar, imaginary part of the
reduced propagation constant r“ divided by J’, and insertion
loss L2T (in dB) vs. reduced slab width D. Material constants
~’=l, K’=+0.5, c’=16.

smaller value of D. The minimum value of L2* for a

given p“ is very nearly the same in the two cases con-

sidered (e= 11 and e = 16).

We conclude this section by re-emphasizing the three

important assumptions made in this part of the calcu-

lation. The assumptions used in addition to the strong

field concentration approximation are:

1) neglect of dielectric losses

2) neglect of losses due to K“

3) center loading.

In comparing experimental data to the theory, these

three assumptions should be kept in mind.

IV. POWER HANDLING CAPABILITY

It is well known that ferrite phase shifters become

lossy at high peak power levels. The critical power level

at which this additional loss occurs is determined by the

onset of spin-wave instability [7]. The instability sets

in when the precession angle (the angle between the in-

stantaneous magnetization and the dc field) exceeds a

certain critical value. The threshold condition can also

be expressed in terms of the RF magnetic field strength.

In order to calculate the power handling capability of

the phase shifters under discussion, it is, therefore, first

necessary to determine the relationship between the

power flowing through the guide and the RF field

strength in the ferrite slabs.

The solution of Maxwell’s equations for the case of

adjacent, oppositely magnetized slabs has been con-

structed by suitable superposition of plane wave solu-

tions inside the ferrite and by matching these solutions

to the exponential solutions outside the ferrite slabs. We

assume again that the ferrite slabs are sufficiently thick

so that the strong field concentration approximation is

applicable. In a coordinate system such as shown in

Fig. 14, the RF fields for the symmetric modes are for

O<x<d

k= = hZOe–iOv, & = j~UOe–jh.’, bZ = bZOe–~@~ (15)

where

hzo =

h., =

bzo =

.

dzzo + K~UO

[

Kr

/ZO u COS kmx – —
(pee – r2)l/2 ‘in ‘mx 1

e. = bJ r (16)

and for x > d

(rj – 1)1/2

12, = j hc
r

(17)

e, = hz/I’

where

~ _ (w – r’) sin k~d

(r’ – 1)11’(,u.6 – r~)llz
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Fig. 14. Coordinate system used in Section IV.

For x <O, the :solution (15)–(18) must be continued in

such a way that h., b=, and e= are symmetric, and hy and

b, are antisymmetric. ho is obviously the strength of the

transverse RF magnetic field in the center of the wave-

guide (i.e., at x = O).

It can readily be verified that the solution (15)-(18)

indeed satisfies Maxwell’s equations as well as all bound-

ary conditions. It is apparent that eZ, hu, and b. are con-

tinuous at x = O (the interface between the two oppo-

sitely magnetized ferrite slabs). Furthermore, lz~ is ob-

viously continuous at x = d. The condition that bz and e.

be continuous at x = d leads to the characteristic

equation

1

[

6P — rz

cot kmd =
‘r+ (r’ – 1)11’ 1 (19)

~(p,c — rZ)l/%

The relationship between the power flowing through

the guide and the RF magnetic field strength depends,

of course, upon the height of the waveguide. We assume,

for simplicity, that the height of the guide equals one

quarter of the free space wavelength. The power travel-

ing through the interior of the ferrite slabs is, i.bus,

according to (21),

sd ,cgko~

Pin = 2 Sdx=—
(JJO 16(JJ2‘i’

where

(23)

r[(p’ – ‘2K)E – /Jr’]

+—
(pee – r2)l/~

sin kmd cos kv,d

— K(r2 + #e) sinz kind} . (24)

Similarly, the power traveling through the exterior of

the ferrite slabs is, according to (22),

(25)

where

~ , _ (W – r’)’ sin’ kmd
Ou

(r’ – 1)31’(P.C – r’)r ‘
(26)

By using the characteristic equation (19), the reduced

powers pi. and ~o.~ can also be expressed as

P

{

r(r2 – 1)1/2[(p2 – 2K2)E – @2] – p/J,K@ – 1)

r(ye – r’)D +
“n = r2(K6e – rz) IPC — r2 + /Jp,(rz – 1) + ‘2Kr(rz – 1)1/2 ,

(PE -- rg)p~

‘0”’ = r(r’ – 1)’1’[p~ – r’ + Y,%(r’ – 1) + zKr(r2 – 1)’[2] “

(27)

(28)

which is a special case (A2 = O) of the more general

characteristic equation (6).

The time average of the energy flow per unit area in

the y direction is

(20)

where the asterisk denotes the complex conjugate.

Thus, from (15) and (16) for O<x<d

+ r[(p’ – 2K2)C – #r’] COS 2knX

-— K(&t.C – rZ)l@(rz + W) sin 2k.,x} (21)

whereas, for x:>d from (17) and (18),

ckoz(w — I’z)z sinz k~d
s= e–2a (z–d)

8~(r’ – l)(Y.C – r’) r “
(22)

In Fig. 15(a) and (b), ~i., ~~ut, and P =~in+@out, are

plotted vs. the reduced slab thickness for a representa-

tivecase (p=l, K=**, c=ll).

It should be noticed that in the vicinity of D = 0.25

(i.e., the thickness, at which the insertion loss Lz, is a

minimum) the values of ~ applicable for K = +$ and

K = — ~ are significantly different (P= 0.21 for K z‘ + $

and @ = 0.74 for K = — +j). This implies that the power

handling capability in the two states of the phase shifter

k significantly different. Since the lower value of P deter-

mines the useful power range of the device, we obtain

from (23), (25), and (27)

P = 3.31 x lo–%Ao2ko*. (29)

A useful rule of thumb which is equivalent with (2’9) is

as follows: If XO= 10 cm and IZO= 10 Oe, then Pm10 kW.

Consider now the instability threshold. The strength

of the RF field, in general, is different in different parts

of the sample. It is not immediately obvious at which

point within the sample instability will first set in. It is

shown in the Appendix that, to a reasonably goocl ap-

proximation, the threshold is entirely determined by the
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Fig. 15. Power (in reduced units) flowing through the interior (@in)
and exterior (b.,,+) of the ferrite slabs at a fixed value of RF maz-
netic field am’~l_i;ude plotted vs. reduced slab thickness. Assum~-
tions: Al= m, Az=O, y’=l, d=ll, K’=+$ (a), d=-~ (b).

positive circular component of the uniform precession.

Here, the positive sense of circular polarization is de-

fined as that sense of polarization whose direction agrees

with the direction of the free precession of the magneti-

zation vector; or, equivalently, as that sense of polariza-

tion which, together with the direction of dc magnetiza-

tion, forms a right-handed screw.

At remanence, the diagonal component of the perme-

ability tensor is unity to a good approximation. Thus,

the directional cosines of the magnetization vector with

respect to the x and y axes are for O <x < d

as = — jKhu/4TM = (KIZvo/&_M) ejf” t–flu]

% = jKhJ4TM = (jKhJ47rM) e’ @f-~IJ, (30)

where IZOOand kVO are given by (16). The positive circular

component of the uniform precession is

(31)

By plotting the quantity (hzo – LVO) vs. x for a repre-

sentative case, it can be shown that the positive circular

component of the uniform precession has its largest

value at % = O. Thus, instability will tend to occur there

first.

The power handling capability of ferrite phase shifters

can most conveniently be discussed by introducing a

high-power “figure of merit” [8] Ffi, as follows

4~M,yzJl~,i$(’ .P)
Fhp = (32)

~?plr

Here M, is the remanent magnetization and ll..it(c.p J is

the critical field for spin-wave instability measured at

remanence using circular polarization. In previous work

[8], we have shown that the high-power figure of merit

as defined by (32) is subject to some rather fundamental

theoretical limitations and have also presented experi-

mental data. The theoretical discussion, as well as the

experimental data, indicate that a high-power figure of

merit of approximately one can be achieved in practice.

Significantly larger values of Fh, can, according to

theory, be achieved only by reducing the saturation

magnetization [8]. The theory, which leads to this pre-

diction, is based on the assumption that the absorption

line has a “Lorentzian” shape. This assumption is well

justified in materials containing significant amounts of

‘fstrong relaxers” such as D y++, Ho++, Fe++ or Co++,

but does not apply to materials which do not contain

strong relaxers.

The critical power level PcIit of a twin-slab phase

shifter can, of course, be expressed rather simply in

terms of the critical RF field lLCrit [see (29)], and it is not

necessary to introduce the high-power figure of merit.

The advantage of expressing Perit in terms of the high

power figure of merit lies in the fact that the relationship

between insertion loss and power handling capability is

put into evidence. At the same time, the ultimate limi-

tations of phase shifters with a given insertion loss are

clearly indicated.

Using the definition (32), and (23), (25) and (27), the

critical power level can be expressed in terms of Lz= and

FhP by the relation

PC=it = .?’0L~r2~hP2 (33)

~,here

Po=~
(

AI’/K’

)w 8.686. 2TI’’’/w” -
(34)

Here we have used the facts that K’= T47TMr/U, and

that the circular component of the magnetic field at the

interface of the two slabs equals ~lzo. It should be noticed

that the power PO as defined by (34) depends only very

weakly on the properties of the material because AI’ is

proportional to K’ and I’” proportional to W“ to a good

approximation. PO and, hence, the critical power are, of

course, functions of the reduced slab thickness D, be-

cause in (34) p, AI’/K’, I“’/p” depend upon D. For the

previously used numerical example (e= 11, K = + ~,

D= O.25, A~=O, p= O.21, AI’/K’=O.9, l“’/p’’= 75)5) one

obtains, according to (34),

PO -220 kW. (35)

In the calculation of the critical power level, it was

assumed that the separation of the two slabs is vanish-

ingly small. This configuration cannot be realized in

practice. It appears likely that for small slab separations

the ratio of the power flowing through the guide to the

square of the maximum RF magnetic field strength in

the ferrite will not be changed significantly. This implies

that the power P, calculated in accordance with (33)

and (34) will change appreciably with slab spacing be-

cause Ar/K’ depends quite sensitively upon Az. For in-

stance, taking A z as 0.05 (i.e,, a slab spacing 2a2 of

0.016 Ao) and taking all the other parameters as in the

preceding example, reduces the numerical value of P.

from 220 kW to 120 kW.

It appears likely that a high-power figure of merit of

the order of unity can be achieved in practice. The pre-

dicted critical power level of a phase shifter having an
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insertion loss of 1 dB is, thus, of the order of 100 kW.

This value will be further reduced if account is taken of

the dielectric loss. Another important consideration is

the fact that the critical RF field usually changes sig-

nificantly with temperature. This also tends to reduce

the attainable peak power capability.

Note

The performance of twin-slab phase shifters has also

recently been analyzed by Ince and Stern [9]. These

authors have considered the case in which the space

between the two slabs is filled with a suitable dielectric.

Considerable improvement in differential phase shift can

be obtained in this manner.

APPENDIX

FIRST-ORDRR SPIN-WAVE INSTABILITY EXCITED

BY ELLIPTICAL PRECESSION OF THE UNIFORM

MAGNETIZATION

The equation of motion for the amplitude

&l = && + &Yg

of a standing spin wave can be expressed as

&i = i(aba + b&z*) (36)

where

a = a. + aIlcI + all*a*

b = bo + 2all*a (37)

and

a=rl. +tag (38)

is the amplitude of the uniform mode. The analytic ex-

pressions for ao, bo, and all are given in Schlomann et al.

[10], equation (38).

If the uniform precession is not excited (a:= O), the

equation of motion for the spin wave can be transformed

into the form

638 = i(J@fi (39)

by means of the transformation

h = 6P -t X@. (40)

The parameter X in this transformation is given in

Schlomann et :L1. [10], equation (52).

If the uniform precession is excited, the right-hand

side of (39) is modified by the addition of terms propor-

tional to 8P and 8P* which are also proportional to a or

Q* and, are, hence, time dependent. The time-dependent

factor of ~fl is ‘irrelevant and will be omitted because it

does not influence the instability threshold (at least not

to lowest order). The complete equation of motion for

8P can be expressed as

68 = i [f-ok~~ + jww”l (41)

~l,here

f(l) = 2(1 – \ ~ l’)-’ (ull* + Iall)(a + ~a*). (42)

Under typical conditions encountered in practical ap-

plications, the transformation parameter X is small in

magnitude, being given (approximately) by

]Al~~lbO1/aO~l&sin”o. (43)
2 4 ~fi

Since the important spin waves have 9cMr/4, we find

for u.v,/u~ = 1

[kI =*. (W)

Under these conditions, it is permissible to neglect. the

terms containing 1 in (42) by way of approxima lion.

The factor f(t) of 5P* in this equation is, thus,

f, = 2all*a

— LOM sin 0 cos 8ei4a. (45)

If the uniform precession is elliptical, the time depen-

dence of a is given by

@ = a+e;”’ + ~_e–i.f. (46)

Only the positive circular component a+ of the uniform

precession gives rise to instability. The instability

threshold is

Ia+l.ri~= ‘“ _
W.Usin O cos O

where q is the relaxation rate of the spin wave under

consideration.
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