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A negative value of w, represents a gap rather than over-
lap between strip edges.

The basis for parallel-plate capacitance is shown in
Fig. 10. For both even and odd modes, C,=C1+Cs.
Since the strip arrangement is symmetrical in this case,
the fringe capacitance is calculated for only one strip.
Again, the required expressions for fringing capacitance
are found by conventional methods.
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Theotetical Analysis of Twin-Slab Phase
Shifters in Rectangular Waveguide

ERNST SCHLOMANN

Abstract—The differential phase shift and the losses to be ex-
pected in phase shifters using two oppositely magnetized ferrite slabs
located symmetrically in a rectangular waveguide have been calcu-
lated for varicus locations and thicknesses of the ferrite slabs. For
small thicknesses of the ferrite slabs, the differential phase shift in-
creases rapidly with increasing thickness reaching a maximum when
the thickness is approximately 1/10 of the free space wavelength.
The calculated insertion loss of a 360-degree phase shifter decreases
with increasing slab thickness for small thickness, reaching a mini~
mum when the thickness is approximately 1/25 of the free space
wavelength. The minimum insertion loss calculated with the assump-
tion that the imaginary part of the diagonal component of the perme-
ability tensor is 0.01 and that dielectric loss can be neglected is ap-
proximately 0.85 dB. The peak power handling capability has also
been analyzed. It can conveniently be summarized in terms of a high-
power figure of merit., For reasonably high values of this figure of
merit, a peak power capability of the order of 100 kW is anticipated.

I. INTRODUCTION

NE OF THE more promising device configura-
tions for digital ferrite phase shifters is that of a

rectangular waveguide containing circumferen-
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tially magnetized ferrite toroids of suitable length [1],
[2]. Such a structure is shown in Fig. 1. A very similar
structure, which is more readily amenable to theoretical
analysis, is shown in Fig. 2. Here the ferrite toroid has
been replaced by two oppositely magnetized slabs which
extend over the complete height of the waveguide. The
propagation of electromagnetic waves through wave-
guides of the type shown in Fig. 2 has previously been
analyzed by Lax et al. [3], [4] and by von Aulock [5].
Here we use substantially the notation of von Aulock.

In the previous work, only the differential phase shift
and the field configuration have been discussed. The
present paper contains more detailed results than pre-
viously published, concerning the differential phase shift
and its dependence upon parameters such as spacing,
width, dielectric constant, and remanent rnagnetization
of the ferrite slabs. In addition, the present paper con-
tains a discussion of the insertion loss and the peak
power limitations of these devices.

For odd TE,,-modes the characteristic equation for
the reduced propagation constant I' can be expressed as
v(1 + cot ez cot @) 4 ¢ cot ey + n cot ay

M

cotd =
cot ay cot aa — 1
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Fig. 1. Phase shifter using ferrite toroid.
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The lengths a;, as, and d are explained in Fig. 2. Aq is the
free space wavelength, e the permittivity, u the diagonal,
+jk the off-diagonal component of the permeability
tensor, and T' equals A¢3/27 where B is the propagation
constant. If €, u, and k are real, the solution I' of the
characteristic equation (1) is also real. This means that
the wave is not attenuated. If ¢, u, or k are complex,
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Fig. 2. Phase shifter using twin ferrite slabs.

of practical interest, the RF fields are strongly concen-
trated in and near the ferrite slabs, so that the precise
location of the side walls of the waveguide becomes ini-
material. It is shown, in fact that the differential phase
shift is large enough to be of practical interest only when
T'?2>1. This implies that the variation of the electro-
magnetic field is sinusoidal inside the ferrite, but expo-
nential outside the ferrite. In most cases of practical
interest, the exponential decrease of the fields away
from the ferrite slabs is so strong that the exact location
of the waveguide wall has no substantial influence on the
propagation characteristics. This can be derived in a
formal way from the characteristic equation (1) by
noting that for I'*>1, cot ay becomes —j coth ]oq] and,
hence, independent of ¢, for |a1| >>1. We shall refer to
this approximation as the “strong field concentration”
approximation.

For convenience, we introduce the abbreviations

D = 27rd/)\0; Al = 211'(11/)\0; A2 = 27!'(12/)\0. (5)

The characteristic equation in the strong field concen-
tration approximation [4:(I'?—1)Y2>1] can then be
expressed as

«I
— [ + p (T2 — 1)1/2} tanh A,(T? — 1)1/2

I

cot D(ey, — I'H)1/2 =

(ewe — T2)12[1 + tanh A4(I'2 — 1)172]

however, the solution I' of this equation is also complex;
the imaginary part describing the attenuation of the
wave. The effective permeability u. in (2) is given by

2 2

u? — «

)

He =
u

In the present context, the case of near center loading

is of particular interest. In this case oy =0, and the char-
acteristic equation reduces to

cot d = v -+ 7 tan a;. €))

Since the characteristic equation (1) is quite involved
and depends on a large number of parameters, it is
worthwhile to try to simplify it by introducing a reason-
able approximation, reducing at the same time the
number of significant parameters. The discussion of the
characteristic equation which follows shows that in cases

. (6)

The simplification for the case of center loading (d.=0)
is obvious. Equation (6) can also be used if I'2>eu,. In
this case, the left-hand side must be replaced by
coth D(I'?—eu.)"? and the first factor in the denominator
on the right-hand side by (I'2—eu.)/2

I1. DIFFERENTIAL PHASE SHIFT

In order to test the wvalidity of the strong field con-
centration approximation, the characteristic equation
(4) (applicable for center loading) has been solved both
with and without invoking this approximation. This cal-
culation was carried out for e=11, y=1, and x= £+0.5.
These numerical values are applicable in the case of
spinel ferrites at the remanence point if 4r Myem equals
w/27, where w is the angular frequency and v the gyro-
magnetic ratio.

Figure 3 shows the reduced propagation constant I' as
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Fig. 3. Reduced propagation constant I'=2\y8/2x vs. reduced slab

width D =2rd/\, for A;=0 (center loading), di=7/2 (empty
waveguide at cutoff), and A;= « (strong field concentration ap-
proximation). Material constants: u'=1, ¥ = +%, ¢ =11.

a function of reduced slab thickness for center loading.
Four separate curves corresponding to Ai=w/2, A1= =,
and k= =+ % are shown. The lower portion of each curve is
replotted on an expanded scale in the lower right-hand
corner of the figure. The case A;= « represents the
strong field concentration approximation. The case
Ay=7/2 corresponds to a waveguide which is at cutoff
in the limit D—0. It may be seen that corresponding
curves differ appreciably only for small slab thicknesses
where the differential phase shift is small and, hence, of
little practical interest. This shows that the strong field
concentration approximation is reasonably well justified
under the conditions encountered in practice.

The characteristic equation applicable in the case of
strong field concentration has been solved for arbitrary
but relatively small spacing of the slabs. In addition to
the previously mentioned numerical example (e=11,
=1, k= +0.5), the calculation was also carried out for
e=16,u=1, k= +0.25, +0.32, +£0.4, and +0.5. The di-
electric constant (e =16) is typical for garnets.

Figures 4-8 show the difference between the reduced
propagation constants for the two directions of mag-
netization (i.e., the differential phase shift per unit
length times Ay/27) as a function of reduced slab thick-
ness D in the strong field concentration approximation.
The four different curves in each figure correspond to
As equal to 0, 0.05, 0.1, and 0.2. [t may be seen that the
differential phase shift increases rapidly with slab thick-
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Fig. 4. Reduced differential phase shift AT vs. reduced slab width
D calculated using strong field concentration approximation. Ma-
terial constants: p'=1, &= £0.5, & =11

0.5

0.4
f—
—0.3

0.2

0.1

% 02 04 06 08 10

Fig. 5. Reduced differential phase shift AI' vs. reduced slab width
D calculated using strong field concentration approximation. Ma-
terial constants: p' =1, ¢ = +0.25, ¢ =16.
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Fig. 6. Reduced differential phase shift AT vs. reduced slab width

D calculated using strong field concentration approximation. Ma-
terial constants: u'=1, ¢ = +0.32, ¢ =16.
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Fig. 7. Reduced differential phase shift AT vs. reduced slab width

D calculated using strong field concentration approximation. Ma-
terial constants: g’ =1, "= +0.44, ¢ =16.
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Fig. 8. Reduced differential phase shift AT vs. reduced slab width
D calculated using strong field concentration approximation. Ma-
terial constants: u' =1, ' = +0.5, ¢ =16.
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Fig. 9. Reduced differential phase shift AT vs. «’ (the off-diagonal
component of the permeability tensor) for D=0.4 and various
slab spacings 4.
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ness when the slab thickness is small, and that it reaches
a maximum when D~0.6, or D~~0.5for e=11and e=16,
respectively, The differential phase shift also depends
fairly sensitively on the slab spacing A., being largest
for A2=0.

A numerical example is instructive. For S band
(f=3 Gc/s) a slab thickness of § inch and a slab spacing
of & inch are equivalent to D=0.4, 4,=0.05. Accord-
ing to Fig. 4, this implies for k= + %, that AT'=0.47 or
a differential phase shift of 16.9 degrees/cm. The length
of the ferrite slabs necessary to obtain a phase shift of
360 degrees is, in general, given by

I = \o/AT. %

For our numerical example, this length is 21.3 cm.

It is instructive to consider the dependence of the dif-
ferential phase shift AT' upon «, the off-diagonal element
of the permeability tensor. For k&1, the differential
phase shift should obviously be proportional to . In
Fig. 9, AT’ has been plotted vs. « for e=16, D=0.4, and
Ay=0, 0.05, 0.1, and 0.2. This figure shows that AT is
in fact proportional to « up to k=%, to a surprising de-
gree of accuracy. This suggests that the calculation used
for determining the curves in Figs. 4-9 could be some-
what simplified by using a perturbation theoretical ap-
proach in which « is treated as small.

ITI. LossEes

The complex circular susceptibilities x, and x—_, as
calculated on the basis of the Landau-Lifshitz equation,
can be expressed in the form

M
X+ =
w
¥+ A
M
X =——" )
w
H +
v — i\

where M is the saturation magnetization, I the internal
magnetic field, w the angular frequency, ¥ the gyro-
magnetic ratio, and the loss parameter A is (for A<gy)
related to the linewidth AH by
WA
AH~ 2. ©)
v?

In order to apply the result (8) based on the Landau-
Lifshitz equation to the behavior at remanence, account
must be taken of the fact that the material is not, in
general, magnetized to saturation. It has been shown
by Rado [6] that this fact can largely be taken into
account by replacing the saturation magnetization by
the remanent magnetization.

According to (8), the imaginary parts of x, and x_
become equal for H=0 (i.e., at remanence). Thus,
k=2m(x+—x-) will be real. It appears quite likely that
this result is a specific prediction of the Landau-Lifshiftz
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equation, which, may not, in general, be absolutely cor-
rect. Nevertheless, it is reasonable to assume for a first
orientation that x, is, in fact, real and to calculate the
losses to be expected on that basis. In order to simplify
the problem, the dielectric losses have also been ne-
glected.

The dielectric and the magnetic contributions to the
insertion loss are roughly comparable when the mag-
netic and dielectric loss tangents are equal. In “good”
microwave ferrites, the dielectric loss tangent is of the
order of 10~4 The magnetic loss tangent, on the other
hand, is usually larger than 10—, Under these conditions,
the dielectric losses can be neglected by way of
approximation.

The losses have been calculated only for the case of
center loading in the strong field concentration approxi-
mation. The relevant characteristic equation is (6) with
4,=0. We replace I' by TV — T/, u by 1 —ju’’, and p. by
we—jue! where

pe’ = (1 ) (10)

since « is real.

For small I', x//, and u./’ their interrelationship
through the imaginary part of the characteristic equa-
tion is of the form

I'T (e + 8) = jen'a + u'y (11)

where
e — I2
kI -+ (I — )1
@ = [1 + cot? D(eu, — I'2)!2]D —
e — I'2
K 2 e — "2
A== ™ + (12 — 1)1 - (T’ — 1)
T2
y=—¢IN + — 12
(2 — 1)1 (12)

As long as dielectric losses can be neglected, I is
proportional to u’’. It is, therefore, convenient to con-
sider the ratio I/ /u/’. In Fig. 10, this quantity is plotted
vs. D for e=11, k=0, +1; and, similarly, in Fig. 11 for
e=16, k=11, +% The expected loss L {(in dB) of a
phase shift section of length / can be obtained from these
graphs by using the relation

l
L =8.686-2r — I'".

Ao

(13)

It should be noticed that IV’ /i’ depends very little upon
k, at least for |«| <% and D <0.4. This is especially true
for the larger value of € used in the calculation (Fig. 11).
This again suggests that a perturbation-theoretical
treatment of the characteristic equation, in which « is
treated as small, is adequate for most purposes.

A very important quantity characterizing the per-
formance of phase shifters is the ratio of loss to differen-
tial phase shift, or equivalently, the loss of a waveguide
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Fig. 10. Imaginary part I'" of the reduced propagation constant

divided by w'” plotted vs. reduced slab width D for 4=
(strong field concentration approximation) and A»=0 (center

loading). Material constants: u'=1, ¥'=+3, ¢ =11, " =0.
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Fig. 11. Imaginary part I/ of the reduced propagation constant di-
vided by u”’ plotted vs. reduced slab width D for A;= « (strong
field concentration approximation) and A:=0 (center loading).
Material constants: g’ =1, « = £0.25, £0.5, ¢ =16, ' =0.

section having a prescribed differential phase shift of, for
instance, 2. This loss, denoted by L., according to (7)
and (13) is related to IV" and AT by

La, = 8.686 X 27T/ /AT, 14

Figure 12 shows a plot of Ly, vs. D for e=11, k= +3,
and assuming center loading (4,=0). For the sake of
definiteness, it has been assumed that u,/’ =0.01, i.e.,
u'/ =0.008. These numerical values are reasonable for a
good ferrite. If the actual value of p,” differs from 0.01,
the relevant curve can be obtained by appropriately
scaling the vertical axis. The curve of Ly, vs. D has a
rather sharp minimum at D =0.25. This corresponds to
a slab thickness of approximately 55 times the free space
wavelength \o.

In Fig. 13, similar results for e=16 and k= +3 are
shown. The curve for L, is based upon the assumption
that u’’ =0.01 (rather than 0.008, as in Fig. 12). It should
be noticed that the minimum of Ls, now occurs at a
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Fig. 12. Calculated insertion loss Ly, (in dB) of a 360-degree phase

shifter vs. reduced slab width D. Assumptions; 4;=«, 4,=0,
Material constants: p'=1, «'= 3%, u’=%, =11, " =0.008,
=0, p'' =0.01, &' =0.
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Fig. 13. Reduced differential phase shift AT, imaginary part of the
reduced propagation constant T/ divided by 4/, and insertion
loss Loy (in dB) vs. reduced slab width D. Material constants
w'=1, =205, ¢=16.

smaller value of D. The minimum value of L,. for a
given u'’ is very nearly the same in the two cases con-
sidered (¢e=11 and e=16).

We conclude this section by re-emphasizing the three
important assumptions made in this part of the calcu-
lation. The assumptions used in addition to the strong
field concentration approximation are:

JANUARY

1) neglect of dielectric losses
2) neglect of losses due to &’
3) center loading.

In comparing experimental data to the theory, these
three assumptions should be kept in mind.

IV. PowErR HANDLING CAPABILITY

It is well known that ferrite phase shifters become
lossy at high peak power levels. The critical power level
at which this additional loss occurs is determined by the
onset of spin-wave instability [7]. The instability sets
in when the precession angle (the angle between the in-
stantaneous magnetization and the dc field) exceeds a
certain critical value. The threshold condition can also
be expressed in terms of the RF magnetic field strength.
In order to calculate the power handling capability of
the phase shifters under discussion, it is, therefore, first
necessary to determine the relationship between the
power flowing through the guide and the RF field
strength in the ferrite slabs.

The solution of Maxwell's equations for the case of
adjacent, oppositely magnetized slabs has been con-
structed by suitable superposition of plane wave solu-
tions inside the ferrite and by matching these solutions
to the exponential solutions outside the ferrite slabs. We
assume again that the ferrite slabs are sufficiently thick
so that the strong field concentration approximation is
applicable. In a coordinate system such as shown in
Fig. 14, the RF fields for the symmetric modes are for

0<x<d
h; = hz()e_jﬁy, ]ly = jhyoe_jﬂy, b.z: = bzoe_jﬂ?/

(15)

where

I

hzO

Ke
ho [cos B — sin kmx:|

I’(,uee - 1‘2)1/2
pe — I'? .
[ I aE———— 8 1|
T (uee — T?)112
bro = Mhzo + KhyO

hyo = kmx

i

kI
ol p cos Bpx — —————————sin kyx
(nee — T2)12

e, = b,/T (16)

and for x>d
he = Ahge @ gmBy
(PQ —_ 1)1/2

]Zy =7 h:c

T (17)

I

e = hy/T
where

(ue — T?) sin k,d
(T = )i — T30
kn = (w/c)(ese — T2

= [ = (/0] = w/e(rs — 1y

(18)
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Fig. 14. Coordinate system used in Section V.

For x <0, the solution (15)-(18) must be continued in
such a way that 4, b,, and e, are symmetric, and %, and
by are antisymmetric. , is obviously the strength of the
transverse RF magnetic field in the center of the wave-
guide (i.e., at x =0).

It can readily be verified that the solution (15)-(18)
indeed satisfies Maxwell’s equations as well as all bound-
ary conditions. It is apparent that e,, &,, and b, are con-
tinuous at x =0 (the interface between the two oppo-
sitely magnetized ferrite slabs). Furthermore, %, is ob-
viously continuous at x =d. The condition that b, and e,
be continuous at x=d leads to the characteristic
equation

ew — I'?

t s 0

1
cot knd = kI
pluce — T2)L2

o

(T2 — 1)Y2[(u? — 2k2e — pl?] — ppxe(T2 — 1)
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The relationship between the power flowing through
the guide and the RF magnetic field strength depends,
of course, upon the height of the waveguide. We assume,
for simplicity, that the height of the guide equals one
quarter of the free space wavelength. The power travel-
ing through the interior of the ferrite slabs is, thus,
according to (21),

wc ¢ C3ho?
Pin':—— de‘:mpin (23)

w Jo 162

where
n = ————— {Tu(ue — T3 D
p Tl — %) { T ue )
' (u? — 2x)e — ul™
[('u ) " ] sin ku,d cos kn.d
(,Uee —_— P2)1/2

— k(% + pe) sin? k,.d}. (24)

Similarly, the power traveling through the exterior of
the ferrite slabs is, according to (22),

P ki f odn = O (25)
out — T X = — Pour
N 160 7

where
(ue — T2 sin? k,d

(T2 — 1)/ (ue — TOT

Pout = (26)

By using the characteristic equation (19), the reduced
powers p;, and pout can also be expressed as

Prn {I’(ue —I'D+

N I2(uee — I'%)
(ne — I2)p?

pe — 2 4 up (T2 — 1) -+ 2I(12 — 1)Uz

} @7)

pout =

which is a special case (4,=0) of the more general
characteristic equation (6).
The time average of the energy flow per unit area in
the v direction is
1

c
S =— — eh*

2 4x (20)

where the asterisk denotes the complex conjugate.
Thus, from (15) and (16) for 0 <x <d

Ch02

S=———- T — I
167 T2 (uce — I'?) { bl )

-+ I‘[(u2 — 2k%)e — ,ulw] cos 2knx

— k(u.e — I'?)Y2(I'? + eu) sin Zk,,,x} (21)
whereas, for x>d from (17) and (18),
2 —_ 22 a1 2
cho*(ue — T'2)?%sin? k.d taod) 22)

- 8m(T? — 1)(uee — I')T

T(I* — 1)Y2[ue — T2 + puo(T® — 1) + 22 — 1)12]

(28)

In Fig. 15(a) and (b), i, Pous, and p =pin+Pou, are
plotted vs. the reduced slab thickness for a representa-
tive case (u=1, k= +3,e=11).

It should be noticed that in the vicinity of D=0.25
(i.e., the thickness, at which the insertion loss L, is a
minimum) the values of $ applicable for x= 43 and
k= —3% are significantly different (p=0.21 for «k=: 43
and p=0.74 for k= —3%). This implies that the power
handling capability in the two states of the phase shifter
is significantly different. Since the lower value of p deter-
mines the useful power range of the device, we obtain
from (23), (25), and (27)

P = 3.31 X 10~%he?ho?. (29)

A useful rule of thumb which is equivalent with (29) is
as follows: If A\g=10 cm and %,=10 Oe, then P~10 kW.

Consider now the instability threshold. The strength
of the RF field, in general, is different in different parts
of the sample. It is not immediately obvious at which
point within the sample instability will first set in. It is
shown in the Appendix that, to a reasonably good ap-
proximation, the threshold is entirely determined by the
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Fig. 15.
and exterior (pont) of the ferrite slabs at a fixed value of RF mag-
netic field amplitude plotted vs. reduced slab thickness. Assump-
tions: Ay=, 4, =0, p’' =1, =11, =43 (@), ¥ = —% (b).

Power (in reduced units) flowing through the interior ($in)

positive circular component of the uniform precession.
Here, the positive sense of circular polarization is de-
fined as that sense of polarization whose direction agrees
with the direction of the free precession of the magneti-
zation vector; or, equivalently, as that sense of polariza-
tion which, together with the direction of dc magnetiza-
tion, forms a right-handed screw.

At remanence, the diagonal component of the perme-
ability tensor is unity to a good approximation. Thus,
the directional cosines of the magnetization vector with
respect to the x and y axes are for 0 <x <d

&z = _jK]ly/47TM = (Khy0/47rM>ej(wt—ﬂy)

ay = jrhe/An M = (Grhyo/dwM)er @i =80 (30)

where f, and %, are given by (16). The positive circular
component of the uniform precession is
| ]

| s =il | hao — o | - (31)
By plotting the quantity (A.—#hyw) vs. x for a repre-
sentative case, it can be shown that the positive circular
component of the uniform precession has its largest
value at x =0. Thus, instability will tend to occur there
first.

The power handling capability of {errite phase shifters
can most conveniently be discussed by introducing a

high-power “figure of merit” [8] F, as follows

47TM,«’)’2]ZM-“ (e.p.)

a It

w’u

hp (32}
Here 3, is the remanent magnetization and ke:?2 is
the critical field for spin-wave instability measured at
remanence using circular polarization. In previous work
[8], we have shown that the high-power figure of merit
as defined by (32) is subject to some rather fundamental
theoretical limitations and have also presented experi-
mental data. The theoretical discussion, as well as the
experimental data, indicate that a high-power figure of
merit of approximately one can be achieved in practice.
Significantly larger values of Fj, can, according to
theory, be achieved only by reducing the saturation
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magnetization [8]. The theory, which leads to this pre-
diction, is based on the assumption that the absorption
line has a “Lorentzian” shape. This assumption is well
justified in materials containing significant amounts of
“strong relaxers” such as Dytt, Hott, Fet+ or Cott,
but does not apply to materials which do not contain
strong relaxers.

The critical power level P, of a twin-slab phase
shifter can, of course, be expressed rather simply in
terms of the critical RF field /s [see (29) ], and it is not
necessary to introduce the high-power figure of merit.
The advantage of expressing P in terms of the high
power figure of merit liesin the fact that the relationship
between insertion loss and power handling capability is
put into evidence. At the same time, the ultimate limi-
tations of phase shifters with a given insertion loss are
clearly indicated.

Using the definition (32), and (23), (25) and (27), the
critical power level can be expressed in terms of Li. and
Fup by the relation

Pcrit = .P[1142'1r2F‘hp2 (33)
where

¢t AT/«

442\ 8.686- 271" /u”’

Here we have used the facts that ¥ =v4wM,/w, and
that the circular component of the magnetic field at the
interface of the two slabs equals $4,. It should be noticed
that the power P, as defined by (34) depends only very
weakly on the properties of the material because Al is
proportional to & and I’ proportional to u'/ to a good
approximation. Py and, hence, the critical power are, of
course, functions of the reduced slab thickness D, be-
cause in (34) p, AT'/x’, IV /u"’ depend upon D. For the
previously used numerical example (e=11, k= %1,
D=0.25, 4,=0, p=0.21, AT/’ =0.9, T" /u' =0.75) one
obtains, according to (34),

Py~ 220 kW. (35)

In the calculation of the critical power level, it was
assumed that the separation of the two slabs is vanish-
ingly small. This configuration cannot be realized in
practice. It appears likely that for small slab separations
the ratio of the power flowing through the guide to the
square of the maximum RF magnetic field strength in
the ferrite will not be changed significantly. This implies
that the power P, calculated in accordance with (33)
and (34) will change appreciably with slab spacing be-
cause AT'/x’ depends quite sensitively upon 4,. For in-
stance, taking A, as 0.05 (i.e., a slab spacing 2a; of
0.016 Ao) and taking all the other parameters as in the
preceding example, reduces the numerical value of P
from 220 kW to 120 kW.

It appears likely that a high-power figure of merit of
the order of unity can be achieved in practice. The pre-
dicted critical power level of a phase shifter having an
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insertion loss of 1 dB is, thus, of the order of 100 kW.
This value will be further reduced if account is taken of
the dielectric loss. Another important consideration is
the fact that the critical RF field usually changes sig-
nificantly with temperature. This also tends to reduce
the attainable peak power capability.

Note

The performance of twin-slab phase shifters has also
recently been analyzed by Ince and Stern [9]. These
authors have considered the case in which the space
between the two slabs is filled with a suitable dielectric.
Considerable improvement in differential phase shift can
be obtained in this manner.

APPENDIX

FIrsT-ORDER SPIN-WAVE INSTABILITY EXCITED
BY ELLIPTICAL PRECESSION OF THE UNIFORM
MAGNETIZATION

The equation of motion for the amplitude
da = ba, + 8oy

of a standing spin wave can be expressed as

da = i{ada + bda*) (36)
where

a = a + aua + ata*

b = bo + 2an*a @37
and

a = a; + iay (38)

is the amplitude of the uniform mode. The analytic ex-
pressions for ag, by, and au are given in Schlémann et al.
[10], equation (38).

If the uniform precession is not excited (a=0), the
equation of motion for the spin wave can be transformed
into the form

by means of the transformation
da = 88 + NOB*. (40)

The parameter A in this transformation is given in
Schlémann et al. [10], equation (52).

If the uniform precession is excited, the right-hand
side of (39) is modified by the addition of terms propor-
tional to 88 and 88* which are also proportional to « or
o* and, are, hence, time dependent. The time-dependent
factor of 84 is irrelevant and will be omitted because it
does not influence the instability threshold (at least not
to lowest order). The complete equation of motion for
883 can be expressed as

88 = i[wid8 + f(£)08*] (41)

where
i = 2(1 — | x

D ay* + Aapy) (e + rAa*).  (42)
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Under typical conditions encountered in practical ap-
plications, the transformation parameter A is small in
magnitude, being given (approximately) by

1 1wy
M ~— | byl Jag~— —sin?0.
AV,

Wk

(43)

Since the important spin waves have f~z/4, we find
fOI‘ wy/wk =1

(+4)

[)\| ~ f.

Under these conditions, it is permissible to neglect the
terms containing A in (42) by way of approximalion.
The factor f(¢) of §8* in this equation is, thus,

fr= 2a11%a

= — wyr sin @ cos feba.

(45)

If the uniform precession is elliptical, the time depen-
dence of a is given by

(46)

o = a+eiwt _{,_ aae——iwt'

Only the positive circular component oy of the uniform
precession gives rise to instability. The instability
threshold is

1
1 oy {crit =
wyr 8in 6 cos @

where 7 is the relaxation rate of the spin wave under
consideration.
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